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Abstract. In Spiking Neural Networks, the codification of analog signals
constitutes a primordial pre-processing step. Hereof, Ben’s spiker algorithm,
as a temporal coding schemes, is one of the most recently used methods.
Nevertheless, having optimal parameters is of great importance. In this paper,
the performances of two evolutionary algorithms and one swarm intelligence
algorithm are contrasted in said optimization task. Moreover, a comparison
against a Grid Search implementation is also presented. Our findings showed
that Differential Evolution outperformed its counterparts. Furthermore, it is
also proved that the same transformation capabilities, as the Grid Search, are
being reached.
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1 Introduction

Spiking Neural Networks (SNNs), the third generation of Artificial Neural Networks
(ANN), were introduced as a more biologically realistic approximation [1] regarding
how information is spread, compared to past generations. In the brain, the interaction
between neurons is done by transmitting action potentials (or spike trains) to other
nearby neurons [2].

Since all real-world signals are characterized as analog and temporal, it becomes
indispensable to implement a technique capable of transforming them into spike trains
and preserve as much information as possible in order to harness the usage of SNNs.

These encoding methods are often divided into two approaches: Rate and Temporal
coding schemes [3]. The Rate coding strategy focuses on how information is encoded
(count, density or population rate) [3, 4].

On the other hand, Temporal coding methods encode signals based on the timing
of significant events [5, 6]. Furthermore, it has been noted that rate coding suffers
from wide periods of latency between spikes, which may not be suitable for some
SNNs applications [4]. For that reason, temporal encoding has been used in more
recent works [4].
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Algorithm 1 BSA encoding
1: input: S signal, FIR filter, threshold
2: L← length(S), F ← length(FIR), Out← zeros(L), Shift← min(S)
3: S ← S − Shift
4: for t = 1 : (L− F ) do
5: E1← 0, E2← 0
6: for k = 1 : F do
7: E1← E1 + abs(S(t+ k)− FIR(k)), E2← E2 + abs(S(t+ k − 1))

8: if E1 ≤ (E2 ∗ threshold) then
9: Out(t) = 1

10: for k = 1 : F do
11: S(t+ k + 1)← S(t+ k + 1)− FIR(k)

12: output: Out, Shift

Algorithm 2 BSA decoding
1: input: Spikes, FIR filter, Shift
2: L← conv(Spikes,FIR)+Shift
3: output: Out

For a more in-depth analysis for these schemes, [3] provides a comprehensive
review of the subject. Moreover, there are many temporal coding algorithms that have
been proposed: Step-Forward (SF), Threshold-Based Representation (TBR), Moving
Window (MW) and Ben’s Spiker Algorithm (BSA), to name a few [3, 7]. Primarily, the
latter has been used to encode data streams (e.g., Electroencephalography) [3, 7].

First introduced in [8], BSA is an extension of Hough Spiker Algorithm (HSA).
The core idea behind this technique is that an analog signal can be constructed using
the convolution of a spike train and a FIR filter [7, 9]. Hence, BSA uses a suitable filter
to produce a spike train based on the comparison of two errors.

The first one involves the sum of differences between the signal and the filter.
The second one represents the aggregated value of the signal; a spike is produced
whenever the first error is smaller than the weighted (by a threshold) second
error [5] (Algorithm 1).

Consequently, the BSA decoding is achieved by the convolution of the encoded
spike train signal and the FIR filter (Algorithm 2). Thus, it is evident that the
composition of the FIR filter and the threshold value are of great importance.
The configuration of this filter relies on two main parameters: Filter size and
Cutoff frequency.

In this preliminary proof of concept, two main goals are pursued: To compare
the performance of two well known evolutionary algorithms (EA) and one swarm
intelligence algorithm (SI) for the optimization of the BSA parameters (Filter size,
cutoff frequency and threshold) and to contrast the best performing EA or SI against
a Grid Search (GS).

Moreover, the reason to choose GS as a comparative method is not only because
it is a deterministic technique, but also because it was used in [7] as a optimization
technique. In order to measure the BSA efficiency, three metrics criteria will be used:
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Fig. 1. All signals created with a length of 1001 elements and sampled at 1000 Hz.

Table 1. Range for each variable as established in [7].

Variable Range Increment
Filter size 17 - 81 4
Cutoff frequency 20 - 80 2
Threshold 0.8 - 1.1 0.01

– Signal to Noise Ratio (SNR): Measures the relation involving the original signal
power and the noise signal power. Noise is considered as the difference between the
original signal (s) and the decoded signal (r). Higher SNR values mean better results.
It is defined as:

SNR = 10 · log10


N∑
t

s2t

N∑
t

(st − rt)2

 . (1)

– Absolute Firing Rate (AFR): Indicates the saturation of the spike train (sp). Lower
AFR values mean a less saturated signal. It is defined as:

AFR =

N∑
t

|spt|

N
. (2)

– Symmetric Mean Absolute Percentage Error (sMAPE): A percentage error that
measures accuracy between the original signal and the reconstructed one [10], [11].
Unlike SNR, this metric considers both, the original signal (s) and the reconstructed
signal (r) as independent from each other. Lower sMAPE values mean better results.
It is defined as:

sMAPE =
1

N

N∑
t=1

|rt − st|
|rt|+ |st|

· 100%. (3)

71

Spiking Neural Networks Codification Using Bio-Inspired Computation

Research in Computing Science 152(5), 2023ISSN 1870-4069



Table 2. Parameter values used for each EA and SI algorithm. These values were selected by a
trial-and-error process.

(a) GA
Version Canonical (Real representation)

Population 50
Crossover SBX(η+10 - 90%
Mutation Uniform - 60%

Parent selection Probabilistic binary tournament - 60%
Elitism 1

Boundary management Ran[13]
Generations 200

(b) DE
Version DE/rand/1/bin

Representation Real
NP 50
Cr 0.8
F 0.5

Boundary management Ran[13]
Generations 200

(c) PSO
Version Global-best PSO

Representation Real
Cumulus size 50

W 0.65
C1 1.2
C2 1.4

Boundary management Ran&RaB[14]
Generations 200

Table 3. Statistical results of 30 independent executions. Values in boldface indicate the best
value. H=1 means that a significant difference was found.

Statistic GA DE/rand/1/bin Global-best PSO
Friedman test
p-value H

Best 10.7257 10.7826 10.7825

2.46E-13 1
Mean 10.6966 10.7726 10.7294

Median 10.7024 10.7825 10.7250
Worst 10.6349 10.7310 10.5168

Std Dev 0.0206 0.0151 0.0497

The rest of this paper is structured as follows: In Section 2, the methodology for two
experiments to be conducted is explained. Section 3 describes the experiments layout,
as well as the corresponding results. In Section 4, a general discussion is made of the
achieved results and the evidence observed. Section 5 consists of some conclusions
attained as well as ideas for future work.

2 Methodology

Using the implementation of [7], eleven signals were created (Fig. 1). These are
produced by a composition of sine signals ranging from 2 to 30 Hz with random power
and random phase lags. Also, white noise was added with a strength of 3. All signals
have a length of 1001 elements, sampled at 1000 Hz.

The first experiment consists in comparing performances for the optimization of the
BSA parameters. Two commonly used EA are considered. Namely, Genetic Algorithm
(GA) and Differential Evolution (DE). Also, a SI algorithm called Particle Swarm
Optimization (PSO) is tested as well. Since SNR is highly recommended [6, 7, 12],
this metric was used as the objective function for the three compared approaches. The
first signal (Fig. 1a) was utilized.

In the second experiment, the optimization method1 proposed in [7], where a GS is
employed to find the optimal set of parameters, was applied to each remaining signal
(Fig. 1b - 1k). After that, the best performing EA or SI from the previous experiment
was used to the same task on the same signals.

This test aims at proving the transformation capabilities of an EA or SI against a
deterministic and proved method. The GS ranges of each variable are shown in Table 1.
Moreover, the parameters for each bio-inspired algorithm are presented in Table 2.

1 github.com/KEDRI-AUT/snn-encoder-tools

72

Carlos Alberto López-Herrera, Héctor Gabriel Acosta-Mesa, Efrén Mezura-Montes

Research in Computing Science 152(5), 2023 ISSN 1870-4069



Table 4. Details of the median run, by each algorithm. a) Metrics comparing the results of
the algorithms. Values in boldface indicate a better result. b) Set of parameters found by
each algorithm.

(a) Metrics achieved
GA DE/rand/1/bin Global-best PSO

SNR 10.7024 10.7825 10.7250
sMAPE 13.6305 13.2633 13.5431

AFR 0.3337 0.3357 0.3337

(b) Parameters found
GA DE/rand/1/bin Global-best PSO

Filter size 71 69 71
Cutoff frequency 49.7601 38.8649 49.1676

Threshold 0.9563 0.9572 0.9564

Fig. 2. Graphical results obtained. a) Convergence graph of the median execution by each
algorithm. b) Visual comparison between the original signal and the reconstructed signals using
the parameters found at the best execution.

3 Experiments and Results

3.1 Experiment 1

The focus of this experiment is to compare the performances of two common EA and
one SI algorithm for the optimization of the BSA parameters on a given signal. To
achieve this, 30 independent executions were performed per compared algorithm using
the first signal (Fig. 1a). The same ranges of the variables (Table 1) were acknowledged
in each algorithm implementation.

In Table 3, the statistical analysis of SNR values (objective function) obtained in all
executions and the Friedman test results (95%-confidence) are presented. Furthermore,
in Table 4 the details of the algorithms median run are shown. Table 4a refers to the
metrics, whereas Table 4b presents the parameters found. Finally, the convergence
graphs of the three algorithms are presented in Figure 2a. Also, Fig. 2b includes
the contrast between the original signal and the reconstructed signal by the three
compared algorithms.

From these results, it is noticeable that DE/rand/1/bin outperformed both, GA and
Global-best PSO. This is also validated by the Friedman test (Table 3). Furthermore,
all parameters found are quite similar. On this regard, DE/rand/1/bin managed to get a
better result using a lower filter size (Table 4).

Additionally, all algorithms showed a similar convergence dynamic (Fig. 2a): the
exploration seems to decrease rapidly. Similarly, Fig. 2b shows that the reconstructed
signals do not exhibit mayor differences among the algorithms implementations despite
the variations observed by metrics.
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Table 5. Detail of Wilcoxon rank-sum results based on SNR metric. H=0 means no significant
difference was found.

Statistic GS DE/rand/1/bin
Friedman test
p-value H

Mean 9.1896 9.4786
0.2730 0

Std Dev 0.9367 0.9811

Fig. 3. Visual comparison between signal reconstruction from GS and DE for signal 2.

3.2 Experiment 2

The main goal of this experiment is to test the best performing bio-inspired algorithm
out of the previous experiment against the implementation in [7] on ten different signals
(Fig. 1b - 1k). Considering the fact that DE showed the best performance, it was selected
for this experiment.

The parameters from the previous implementation were kept (Table 2b). In order to
contrast the overall performance of GS and DE, Table 5 shows the statistical values
obtained from SNR metrics of all signals, as well as the results of the Wilcoxon
rank-sum test (95%-confidence).

Finally, a representative visual comparison of all tested methods on signal 2 (Fig.
1b) is presented in Fig. 3. From Table 5, it can be establish that no significant differences
were found between GS and DE. This is also supported by the visual comparison
highlighted in Fig. 3, where no mayor differences are visible.

4 Discussion

Firstly, experiment 1 shows that DE/rand/1/bin exhibited a better performance over the
other algorithms tested (Table 3). Moreover, DE was able to lower the filter size variable
the most. This is of great importance since BSA involves the deconvolution/convolution
of a signal by the FIR filter. Hence, the smaller the filter size, the lower the cost and
computational time.
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Nevertheless, the quantitative improvements observed where not greatly reflected
during visual comparison (Fig. 2b). Also, it seems that all bio-inspired algorithms
converge fairly quick (Fig. 2a). Therefore, more efforts could be made in order to
improve the explorations.

Finally, experiment 2 presents a direct contrast between GS and DE
implementations applied to ten different signals. From there, the observations of GS and
DE showed no significant differences overall (Table 5). This is also reaffirmed by the
visual comparison performed between the reconstructed signal of GS and DE against
the original signal. This evidence points to the ability of DE to match the performance
of a GS with fixed ranges.

5 Conclusions and Future Work

SNNs models represent a paradigm shift from its predecessors; the key differentiation
lies in how information is conveyed. Since SNNs use spike trains, a crucial question to
be asked is: How can we translate analog signals to an impulse-based representation?
In this paper, BSA was chosen as a method to transform analog signals to spike trains.

We tested two evolutionary algorithms and one swarm intelligence algorithm
to optimize parameters for the already mentioned technique. It was found that
DE/rand/1/bin performed better than its counterparts. Yet, results did not significantly
improve the transformation capabilities.

On the other hand, the second experiment compared results between DE and the
implementation in [7]. In such reference, a GS was used to find optimal parameters.
Nevertheless, this method restricts the search space in order to lower the computational
cost and time.

This also implies a certain prior knowledge in order to narrow the variables. In
contrast, the DE implementation did not required any increment restriction. Having
said that, our findings showed that DE could be considered as a optimizer of BSA
parameters. Finally, future work directions could include different paths:

1. Perform experiments with more specialized, bio-inspired algorithms.
2. Implement a parameter tuning method in the algorithms calibration.
3. Evaluate the use of surrogate models for signal transformation.
4. Asses the possibility of a bio-inspired algorithm optimization using the classification

performance of a generic SNN as objective function.
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